Strongly Adaptive Regret Implies Optimally Dynamic Regret
نویسندگان
چکیده
To cope with changing environments, recent developments in online learning have introduced the concepts of adaptive regret and dynamic regret independently. In this paper, we illustrate an intrinsic connection between these two concepts by showing that the dynamic regret can be expressed in terms of the adaptive regret and the functional variation. This observation implies that strongly adaptive algorithms can be directly leveraged to minimize the dynamic regret. As a result, we present a series of strongly adaptive algorithms whose dynamic regrets are minimax optimal for convex functions, exponentially concave functions, and strongly convex functions, respectively. To the best of our knowledge, this is the first time that such kind of dynamic regret bound is established for exponentially concave functions. Moreover, all of those adaptive algorithms do not need any prior knowledge of the functional variation, which is a significant advantage over previous specialized methods for minimizing dynamic regret.
منابع مشابه
Strongly Adaptive Online Learning
Strongly adaptive algorithms are algorithms whose performance on every time interval is close to optimal. We present a reduction that can transform standard low-regret algorithms to strongly adaptive. As a consequence, we derive simple, yet efficient, strongly adaptive algorithms for a handful of problems.
متن کاملImproved Dynamic Regret for Non-degenerate Functions
Recently, there has been a growing research interest in the analysis of dynamic regret, which measures the performance of an online learner against a sequence of local minimizers. By exploiting the strong convexity, previous studies have shown that the dynamic regret can be upper bounded by the path-length of the comparator sequence. In this paper, we illustrate that the dynamic regret can be f...
متن کاملAn adaptive algorithm for finite stochastic partial monitoring
We present a new anytime algorithm that achieves near-optimal regret for any instance of finite stochastic partial monitoring. In particular, the new algorithm achieves the minimax regret, within logarithmic factors, for both “easy” and “hard” problems. For easy problems, it additionally achieves logarithmic individual regret. Most importantly, the algorithm is adaptive in the sense that if the...
متن کاملImproved dynamic regret for non-degeneracy functions
Recently, there has been a growing research interest in the analysis of dynamic regret, which measures the performance of an online learner against a sequence of local minimizers. By exploiting the strong convexity, previous studies have shown that the dynamic regret can be upper bounded by the path-length of the comparator sequence. In this paper, we illustrate that the dynamic regret can be f...
متن کاملVariants of RMSProp and Adagrad with Logarithmic Regret Bounds
Adaptive gradient methods have become recently very popular, in particular as they have been shown to be useful in the training of deep neural networks. In this paper we have analyzed RMSProp, originally proposed for the training of deep neural networks, in the context of online convex optimization and show √ T -type regret bounds. Moreover, we propose two variants SC-Adagrad and SC-RMSProp for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.07570 شماره
صفحات -
تاریخ انتشار 2017